亚洲国产成人久久精品大牛影视-日韩精品无码一区二区三区-国产乱人伦精品免费-97久久超碰中文字幕-中文字幕av无码不卡免费

技術文章您現在的位置:首頁 > 技術文章 > ClickChemistry點擊化學疊氮試劑Azide Plus and Picolyl Azide Reagents

ClickChemistry點擊化學疊氮試劑Azide Plus and Picolyl Azide Reagents

更新時間:2023-04-22   點擊次數:1254次

Azide Plus and Picolyl Azide 試劑

Kinetic comparison of conventional azide
(Figure 1). Kinetic comparison of chelating azide and non-chelating conventional azide.

Recent advances in the design of copper-chelating ligands, such as THPTA or BTTAA that stabilize the Cu(I) oxidation state in aqueous solution, improve the kinetics of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and greatly increase the sensitivity of alkyne detection. Copper-chelating ligands have also been shown to increase the biocompatibility of the CuAAC reaction by preventing the copper ions from causing biological damage1. The next step in improving the CuAAC reaction was the development of copper-chelating azides as more reactive substrates. Since it is speculated that the Cu(I)-azide association is the rate-determining step in the CuAAC catalytic cycle2, the introduction of a copper-chelating moiety at the azide reporter molecule allows for a dramatic raise of the effective Cu(I) concentration at the reaction site, enhancing the weakest link in the reaction rate acceleration(Figure 2). It has been proposed that the high reactivity of chelating azides comes from the rapid copper-azido group interaction which occurs prior to Cu(I) acetylide formation, and this renders the deprotonation of alkyne in the rate-determining step3. This concept was successfully exploited to perform CuAAC reactions using pyridine-based copper-chelating azides (picolyl azides) as substrates4-6. Nevertheless, the copper-chelating motif of picolyl azide molecules is not complete, requiring the presence of a copper chelator (e.g. THPTA) to achieve significant improvement in the kinetics of the CuAAC reaction3, 4.

In efforts to improve the performance of the CuAAC reaction in complex media, Click Chemistry Tools developed new chelating azides with a complete copper-chelating system in their structure, termed “Azides Plus"(Figure 3). These azides are capable of forming strong, active copper complexes and are therefore considered both reactant and catalyst in the CuAAC reaction. Using these types of azides, the CuAAC reaction becomes a bimolecular reaction and displays much faster kinetics compared to the CuAAC reaction performed with conventional azides.

Comparative kinetic measurements for the CuAAC reaction(Figure 4)were performed using an agarose-alkyne resin labeling experiment (3.0 uM CuSO4, with (6.0 uM) or without THPTA ligand) using Cy5 Azide Plus, Cy5 Picolyl Azide, and Cy5 bis-Triazole Azide – the fastest copper-chelating azide that has been reported to date7. As expected, the picolyl azide containing the incomplete copper-chelating motif displays relatively slow reactivity, in particular without the presence of THPTA. The kinetic data shows that completing a copper-chelating moiety greatly enhances reactivity, and importantly does not require the presence of copper-chelating ligands. Interestingly, the copper-chelating azides developed by Click Chemistry Tools display almost identical reactivity in the CuAAC reaction compared to the most reactive copper-chelating azide reported up to now7, bis-triazole azide.

The new copper chelating azides allow the formation of azide copper complexes that react almost instantaneously with alkynes under diluted conditions. This unprecedented reactivity in the CuAAC reaction is of special value for the detection of low abundance targets, improving biocompatibility, and any other application where greatly improved S/N ratio is highly desired.

Selected References:
  1. Steinmetz, N. F., et al. (2010). Labeling live cells by copper-catalyzed alkyne–azide click chemistry. Bioconjug Chem., 21 (10), 1912-6. [PubMed]

  2. Rodionov, V. O., et al. (2007). Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: a mechanistic report. J Am Chem Soc., 129 (42), 12705-12. [PubMed]
    Presolski, S. I., et al. (2010). Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. J Am Chem Soc., 132 (41), 14570-6. [PubMed]

  3. Simmons, J. T., et al. (2011). Experimental investigation on the mechanism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition. J Am Chem Soc., 133 (35), 13984-4001. [PubMed]

  4. Marlow, F. L., et al. (2014). Monitoring dynamic glycosylation in vivo using supersensitive click chemistry. Bioconjug Chem., 25 (4), 698-706. [PubMed]

  5. Clarke, S., et al. (2012). Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. Angew Chem Int Ed Engl., 51 (24), 5852-6. [PubMed]

  6. Gaebler, A., et al. (2016). A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins. J Lipid Res., 57 (10), 1934-1947. [PubMed]

  7. Gabillet, S., et al. (2014). Copper-chelating azides for efficient click conjugation reactions in complex media. Angew Chem Int Ed Engl., 53 (23), 5872-6. [PubMed]

訂購信息(靶點科技國內倉庫):


靶點科技(北京)有限公司

靶點科技(北京)有限公司

地址:中關村生命科學園北清創意園2-4樓2層

© 2025 版權所有:靶點科技(北京)有限公司  備案號:京ICP備18027329號-2  總訪問量:323415  站點地圖  技術支持:化工儀器網  管理登陸

主站蜘蛛池模板: 色欲香天天综合网站| 国产成人精品日本亚洲一区| 人妻三级日本香港三级极97| 国产女人精品视频国产灰线| 亚洲色欲在线播放一区二区三区| 国产精品久久久| 男人的天堂av网站| 亚洲级αv无码毛片久久精品 | 亚洲第一无码精品一区| 久久午夜夜伦鲁鲁片免费无码影院 | 青青草国产精品一区二区| 色综合中文字幕久久88| 欧美激情精品久久| 插我一区二区在线观看| 欧美巨鞭大战丰满少妇| 国产在线aaa片一区二区99| 色在线 | 国产| 亚洲欧美色一区二区三区| 国产精品婷婷久久爽一下| 人妻激情文学| 国产亚洲精品久久久久久大师 | 国产喷水福利在线视频| 在线播放亚洲第一字幕| 天天躁日日摸久久久精品| 亚洲国产精品综合久久网络| av香港经典三级级 在线| 欧美疯狂做受xxxxx高潮| 久久久www成人免费无遮挡大片| 丰满少妇弄高潮了www| 亚洲久悠悠色悠在线播放| 久久国产精品无码一区二区三区 | 成人精品无码| 99久久精品国产综合| 亚洲男人第一av网站| 欧美裸体xxxx极品| 亚洲日韩亚洲另类激情文学一| 亚洲日本中文字幕乱码中文| 正在播放熟妇群老熟妇456| 18禁成年免费无码国产| 国产顶级熟妇高潮xxxxx| 欧美综合区自拍亚洲综合绿色|